Article in Science / Chemistry / Biochemistry
A story started thirty years ago by nutritionist Professor Arnold Bender, and famously supported by the immunohaematologist Professor Terence Hamblin, that a decimal point error made in 19th Century research of the iron content of spinach led to its erroneous promotion, is completely untrue.
 
 
 

Postscript

In an earlier paper (Sutton 2010a) I explain how I traced the origins of the Spinach, Popeye, Iron Decimal Error Story (SPIDES) as far back as I could to an article published in the British Medical Journal. That article was written by Professor Hamblin. I emailed Professor Hamblin and asked for the source of his story. His very prompt and courteous reply was that he had forgotten the original source of the story, after so many years, but thought he may have read it in an unknown copy of the Reader's Digest. Unable to find any earlier source for the story, in the Readers Digest or elsewhere, I concluded that Hamblin had probably conjured the story from thin air. As the paper below reveals, subsequent correspondence from the USA came in response to my 2010 paper and gave me a new lead. In light of this new information I was able to trace the story as far back as an inaugural lecture given by Professor Bender in 1972. In his inaugural lecture (at p. 11) Bender attributes the discovery of the decimal error explanation for the exaggerated iron content of spinach to the work of a professor Schupan. In a later letter published in the Spectator (Bender 1977), Bender claims that the correct iron figure for spinach was first discovered in 1937 by Professor Schupan. I can find no reference to any work published by a Professor Schupan on this subject. If any reader can find it then they will have solved another piece of this puzzle about how myths are created and spread (it is possible that Bender misspelled this professor’s name). A further clue to the origin of the decimal error story can be found in Bender's (1977 p. 11) acknowledgment and thanks to a "Professor den Hartog of Holland for tracing the possible origins of the belief." Unfortunately, Bender gave no reference to any published work or this professor's affiliation.

Without any other evidence to the contrary (since Hamblin never referenced his source), it seems fair to conclude that Bender's reference to a Professor Schupan is the source of Hamblin's mysterious German scientists - who he claimed discovered the decimal error myth in the 1930's. As the article below explains, both Bender and Hamblin were wrong about the true iron content of spinach being discovered in the 1930's. They were also wrong about there ever having been a decimal error. And they were wrong about Popeye eating spinach for iron. Because the truth about spinach and iron was known in 1892 and widely disseminated by US scientists as early as 1907. But it is fair to say that Hamblin most certainly never made the story up out of thin air as I earlier, and wrongly, suspected.

The world works in wondrous, though rationally explainable, ways. Had it not been for my original belief in the SPIDES – based on Hamblin’s BMJ article – and my efforts to track down those mysterious German scientists I would have never embarked on a self-taught course in myth busting and philosophy of science. Those newly acquired skills have enabled me to bust two further myths: first, that all beat patrol policing must be ineffective and second, both the Routine Activities Theory (RAT) and Crime Opportunity Theory explanation of opportunity as a cause of crime.

I developed the concept of Supermyths from this work (myths that are, with great unintended irony, credulously believed by scholars and used to argue for the need to be sceptical of widely accepted myths and fallacies). To date I have identified four supermyths - the Spinach Myth (outlned in this article), the Zombie Cop Myth , Crime Opportunity Myth and the Semmelweis Myth.

Supermyths and Bracedmyths Definition:

What are supermyths and braced myths?

Supermyths, of which braced myths are a sub-type - are ironic unintended, or else a deliberate and disingenuous, consequences of fallacy dissemination. Supermyths have three very specific components:

  1. the creation of a fallacy, myth or error by an orthodox expert
  2. it being used by another expert who in turn promotes it as being ‘true’ and
  3. whilst still thinking that it is true, promotes it as a good example of the need to be healthily sceptical of bad scholarship. Moreover, fourthly:
  4. Braced myths are supermyths that have been pointedly deployed by orthodox scholars in order to bust another specific myth or fallacy. The braced myth hypothesis is that using one myth as a specific mythbusting device in this way braces the supermyth to make it further entrenched and therefore more difficult to prevent it being credulously disseminated as veracious knowledge.
Immunomythology?

As far as I can tell, the Spinach Myth that Hamblin helped to spread led to no physically harmful impact upon anyone. But the two criminological myths I have busted, since investigating his spinach story, are widely believed to be true and they have had a significant international impact upon policing and crime prevention policy making with all the attendant negative consequences that must flow from ineffective measures in these areas.

In a recent blog on this subject I hypothesize that trivial myths such as the SPIDES might actually work like a vaccination against serious ones. Could Hamblin's role in spreading the SPIDES, and its subsequent myth-busting, work as some kind of beneficial social immunomythology vaccination?

Professor Hamblin sadly passed away on January 8th 2012. As a immunohematologist, Hamblin was a notable and highly respected and regarded researcher and teacher. He is particularly notable as an early pioneer of stem cell treatment for cancer. He made a difference by making the world a better place.

Dr Mike Sutton 26th January 2012.

Article starts here

The Spinach, Popeye, Iron, Decimal Error Myth is Finally Busted

For over thirty years a popular myth has been circulating in academic text books, peer-reviewed scholarly journals, popular discourse, university lectures and on the Internet that an accidentally misplaced decimal point in 19th century calculations of the iron content of spinach, exaggerated its iron content tenfold, which was then accepted as true and cited by a multitude of academic studies - all of which failed to check the validity of the figure. This most famous decimal error, it is claimed, led to spinach being erroneously promoted as a good nutritional source of iron and the reason the carton character Popeye's creator, E.C. Segar, chose spinach as the source of his – and the first American superhero’s - amazing powers. The famous Web site Cracked.com even has it as top of the list of the seven most disastrous typos of all time. A search on any search engine, such as Google, will reveal the extent to which this myth is believed and recycled. Earlier this year (Sutton 2010a) I published a primary research paper in the Internet Journal of Criminology that showed there was no published evidence to support the Spinach, Popeye, Iron Decimal Error story and that it appeared to be a myth. In my paper I proved beyond doubt that Segar chose spinach for its vitamin A content (although in fact we know today that spinach contains beta carotene - which the human body converts to Vitamin A).

In this article, I reveal for the first time the results of several months of historical research on iron and nutrition - much of which involved translating old German nutrition text books and academic papers. This article provides the first ever conclusive evidence for the source of the Spinach Popeye Iron Decimal Error Story (SPIDES) and how it occurred. Moreover it goes on to reveal that there most certainly was no decimal place error - but explains exactly why others thought there was.

In my earlier paper on this subject, I traced the source of the story as far aback as I was able to Professor Terence Hamblin’s (1981) article in the British Medical Journal. However, I can reveal here that the original published source of this story was in fact the famous nutritionist, and self-styled myth-buster - Arnold E. Bender. Bender first mentioned it in his inaugural lecture in 1972 (Bender 1972) and later in an article in the Spectator (Bender 1977). In the Spectator, Bender started the myth when he claimed that a German textbook on nutrition (Noorden and Salomon 1920; 476) replicated an earlier decimal point data mistake made by generations of textbooks that unquestioningly replicated erroneous data first published in 1870 by the German scientist E. von Wolff:

“For a hundred years or more spinach has been (and clearly still is) renowned for its high iron content compared with that of other vegetables, but to the joy of those who dislike the stuff this is quite untrue. In 1870 Dr E. von Wolff published the analyses of a number of foods, including spinach which was shown to be exceptionally rich in iron. The figures were repeated in succeeding generations of textbooks – after all one does not always verify the findings of others – including the ‘Handbook of Food Sciences’ (Handbuch der Ernahrungslehre) by von Noorden and Saloman [1] 1920.

In 1937 Professor Schupan eventually repeated the analyses of spinach and found that it contained no more iron than did any other leafy vegetable, only one-tenth of the amount previously reported. The fame of spinach appears to have been based on a misplaced decimal point.”

My primary research paper (Sutton 2010a) cites many scholarly publications whose esteemed academic expert authors - writing on the very subject of the importance of healthy scepticism - unwittingly believe the spinach decimal error myth to be true and so with unintentional irony they use it as an example to support their exhortations on the need for scientists to be healthily sceptical inquirers and always check published 'facts'.

Professor Bender, like Professor Hamblin, is an orthodox authority on nutrition. With further irony, Bender is famously a renowned sceptic of junk science. Perversely, these respected scientists failed to check the 'facts' behind the decimal error story before going into print.

Shortly after publishing the primary research paper I received an email from Bonnie Taylor-Blake in the USA . Bonnie had been researching, on-and-off, the decimal error story herself as a kind of hobby. She wrote to congratulate me on my findings and very kindly emailed some clues she had collected that suggested exactly where the origin of the SPIDES lies. The clue was to be found in an article in the Spectator Magazine (Marnham 1981) and an obscure reference to Professor Arnold E. Bender’s inaugural lecture. “Inaugurals,” as they are known in academia, are quite often lavish affairs, presented by way of an introductory speech by the University Vice Chancellor, or else by one of her or his deans, and supported by free food and wine for well over 100 guests. Bender gave his at Queen Elizabeth College, University of London on 24th October 1972 (Bender 1972). What Bender said before his esteemed academic audience started the myth that he published in the Spectator (Bender 1977) five years later (Bender 1972:11):

“One common belief, that spinach is good for you, appears to be due to experimental error since the belief predates the Hollywood nutrition films based on the muscular development of the film star Popeye. I am indebted to Professor den Hartog of Holland for tracing the possible origin of this belief. It appears to date soon after 1870 when Dr E. von Wolff published food analysis showing spinach to be exceptionally rich in iron, a figure that was repeated in many generations of textbooks; it was in the Handbook of Food Sciences (Handbuch der Ernahrungslehre) by von Noorden and Saloman in 1920. In 1937 Professor Schupan analysed spinach for its iron content with µ-µ’-dipyridyl and found the figure to be one tenth of that reported by von Wolff – the fame of spinach may well have grown from a misplaced decimal point.”

After correcting for the fact that Bender had misspelt Salomon as Saloman in both his inaugural lecture and his Spectator article, which led me to suspect that he had never even read the original volume himself, I was able to purchase a copy of Noorden and Salomon via the Internet from an antiquarian book seller in Germany. As a non-German speaker I found Google’s online translator a most invaluable tool for making sense of the big old German text book that I had in my hands.

Noorden and Salomon (1920) present tables for the iron levels of various food stuffs taken from the published findings of Schall and Heisler (1917), von Berg (1913) and Haensel (1908). These are included in Table 1 (below). Noorden and Salomon’s (1920) figure for the amount of iron in dried spinach is 445 mg of iron per 100g. This figure is derived from Haensel (1908), who presented the iron oxide (note: not iron) content of spinach in percentage terms as 0.445 per cent. To convert this figure to mg per 100g it is simply multiplied by 1000 - which is 445.

Professor Bender was completely wrong about the source of Noorden and Salomon’s data on the iron content of spinach. Absolutely none of it came from von Wolff. Not one single figure. The figure Bender thinks came from the work of Wolff in the 1870’s in fact came from Haensel (1908). The origin of Bender’s myth probably lies in Germany and in his failure and that of others to distinguish between iron and iron oxide measurement by these earlier scientists (a mistake I originally made myself). Had Bender read Noorden and Salomon (1920) he would have seen that they were citing several independent examples of German science as cutting edge knowledge 13 years after Sherman (1907) published the exact reasons why be believed that such data were flawed.

The source of Bender’s decimal error belief derives from the fact that accepted knowledge at the time when Bender was writing quite correctly held that dried spinach contained 44.8 mg of iron per 100g (e.g. Jackson 1938). Subsequent research has recorded a figure of 44.6 (Rewashdeh et al 2009). From this it is easy to see where the decimal error idea in Bender’s spinach story came from. Had Haensel (1908) moved his decimal point to give a figure of 0.0445 per cent iron he would have had an accurate figure for the amount of iron in dried spinach of 44.5 mg per 100g.

Most interestingly, when we study what Bender wrote, we cannot be certain whether he actually meant that the error in the iron content of spinach was due to von Wolff, or his assistant or a typesetter misplacing a decimal point. To be fair, at a stretch, he might even have meant that flawed analysis produced a figure that would only have been correct if someone came along and moved the decimal point. Later myth mongers would have it very clearly that this is what happened as they embellished the tale with various versions that add goofy assistants, sloppy typsetters and von Wolf blotting his copybook. But I’m not sure what a jury would make of Bender’s words. Personally, I do not find the professor guilty beyond reasonable doubt. Let me explain.

In his inaugural lecture Bender writes: “ – the fame of spinach may well have grown from a misplaced decimal point.” And later in the Spectator he writes more boldly: “The fame of spinach appears to have been based on a misplaced decimal point.”

Bender might have meant that Wolff’s analysis was bad science (although as we now know it was in fact Haensel’s figures Bender was referring to) that led to a figure ten times greater than that later found to be accurate. In other words it is unclear whether Bender means a decimal point was put in the wrong place or whether he meant instead that erroneous science produced a figure with a decimal point in the wrong place.

The strongest evidence of all that Bender did not start out with the intention of creating the misplaced decimal point part of the myth is that he begins talking about the subject in his inaugural lecture by saying: “One common belief, that spinach is good for you, appears to be due to experimental error…”

Clearly we can see here that it is early inaccurate scientific techniques that Bender appears to be blaming.

In support of this conclusion, we should note that Bender fails to provide a citation to any work by Professor den Hartog, whom he thanks for telling him the story. The fact that Bender says he is indebted to Hartog for “tracing the possible origin of the belief” suggests, in the absence of any evidence to the contrary, that the two merely communicated informally - either verbally or in writing - about the story.

What Bender is guilty of, as evidenced firstly in his inaugural lecture, is a foggy style of writing that creates a greatly increased chance of potential misinterpretation upon the message he really wishes to convey about the history of nutritional research into spinach. Five years later in the Spectator Bender’s “Early inaccurate scientific techniques” sentence completely vanishes from his account. Perhaps Bender was seeking to use the Spectator to deliberately start an urban myth? We will never know. But what is most interesting is that eight years later he published a book somewhat ironically entitled: “Health or Hoax?” (Bender 1988).

In Health or Hoax? Bender mentions the fact that spinach is not a good source of iron. And once again gets his facts wrong about Popeye eating spinach for iron. But most tellingly – in a chapter entitled “Old Wives Tales True or False? – Bender makes no mention whatsoever of his earlier misplaced decimal point story.

Perhaps by 1988 Bender had actually undertaken some arduous research and found that in fact it was von Bunge in 1892 who discovered the problems with von Wolff’s (1871) research (see Table 1) and not Professor Schupan in 1937.

Lack of clarity in Bender’s writing may be the key to how the myth first started out on its journey to becoming a culturally embedded super myth. For example, Bender’s Health or Hoax? book is infuriatingly every bit as cryptically unhelpful as his inaugural lecture on the subject of iron in spinach. Even though the book is written for consumption by the general public - it is not until page 197 that one sentence alludes to the fact that what Bender writes on page 132 about spinach being “rich in iron” may not mean those who consume it will get much iron out of it: “Meat is a better source of iron, not only in quantity but because the iron in meat is better absorbed than that of plant food.” Bender writes, while never informing his readers why this is the case, and offering zero advice on whether or not “rich in iron” spinach is a good choice of food for those wishing to eat greens as well as, or instead of, meat to ensure they get enough iron in their diet.

Spinach whispers

As Bender’s SPIDES was re-told by others and re-printed it evolved at twists and turns so that there are so many different variations on the theme.

One version of the story suggests that these turn of the century scientists were not clear about whether they analysed fresh or dry spinach (Walter 2004). This is certainly true in relation to Noorden and Salomon’s (1920) tables because, while they do very clearly distinguish between fresh and dry spinach when presenting tables based on von Haensel’s research findings, they fail to do so for Schall and Heisler (1917) and for von Berg (1913). And their lower finding of 44 mg per 100g, for what we can only reasonably presume to be fresh spinach – given that it is labelled as leaves, stalks and juice - would be accurate were it dry spinach (e.g. Rewashdeh et al 2009).

The data in Table 1 reveal how easy it is to see how a popular variant of the myth that would have it that von Wolff recorded dry spinach as fresh (Coultate 2009) has become entangled with the notion of a misplaced decimal point and other accounts that von Wolff mixed up his figures for dried and fresh spinach. Because moving the decimal point for Wolff’s finding of the amount of iron in fresh spinach one place to the left would give a figure of 5.0 which as Table 2 reveals is close to the range of acceptable recent findings for the mg of iron in 100g of dried spinach (see: Olade and Obarisaide 2009). Moving his figure for dried spinach two places to the left would give a reasonable figure for fresh spinach. However, the idea that Wolff confused dried and fresh spinach and/or made decimal point errors in two observations seems fanciful in light of Sherman's (1907: 43; 53) explanation that poor science knowledge at the time was to blame. This is described in more detail below.

Table 1: Older data: Accurate and inaccurate knowledge regarding iron and iron oxide levels in spinach

Type

Units

Value per

100gs

Knowledge Source

Reasonably

Accurate

Discredited Ash Method

Raw Fresh

Dried

mg

mg

50

3,350 (Fe203) 386 (Fe)

von Wolff (1871) ♣

von Wolff (1880)♣

.

mg

2170.6 (Fe203)

Von Haensel (1908)

Other Methods

Raw Fresh*

mg

3.8

Sherman (1907)

Raw Fresh

mg

3.0

Sherman (1907)**

Raw Fresh

mg

36.3

von Haensel (1908)

Raw Fresh***

mg

44-60 (Fe203) 31-42(Fe)

Berg (1913) ♣

Schall and Heisler (1917)♣

Raw Fresh*

mg

4.3

von Bunge (1892)****

Dried

mg

37.0

Atwater and Woods (1895)

Dried

mg

445.0 (Fe203)

von Haensel (1908)

♣ Revision Note: 29 March 2011: Jan Willem Nienhuys very kindly commented on this paper (see comments section) to point out that I made an error in using Wolff's tables for iron oxide here whist assuming them to be for FE (iron). I think my own mistake is interesting - although it may be a pure coincidence - in that the figure of 3,350 mg per 100g (FE203 iron oxide - not iron - FE) would correspond very closely to what we know today to be the real level of actual (FE) iron in spinach if the decimal place were moved two places. In effect, as Jan's comment (see end of this article) reveals, von Wolff (1871) quotes an 1848 result of 50 mg iron per 100 gram of spinach 'fresh substance', and in a later account (1880) he found 3.35 percent iron oxide (5.52 gram) in the ash of 100 gram dry material, corresponding to 386 mg iron. Here then we can see that if the decimal point were moved one place to the left of 386 we would have a pretty good figure for what we know today to be the mg of iron in 100g of spinach. But there is no evidence of a decimal error in von Wolff's work, just the inferior science of the day. As Jan reveals and neatly explains in his comments on this paper, it is important to note that von Wolff and others produce and present different findings for iron and iron oxide. von Wolff (1871) measured 50 mg iron per 100g of 'fresh substance'; and also calculated an average iron oxide content of the ash of 100 gram dry spinach (of two measurements) to be 3.35 percent, which works out to be 386 mg iron per 100g. Wherever I have given a value of Fe203 (iron oxide) - followed by a value for Fe (iron) - in Table 1, these values have very kindly been supplied by Jan Willem Nienhuys. His research results and reasoning, which appear sound to me, are set out in the comments section at the end of this paper.

*Reported by Sherman (1907) as spinach obtained from a grocer that contained some 3 to 4 times less water than a perfectly fresh sample which resulted in the average iron content being a third higher than in a perfectly fresh sample.

** Here Sherman (1907) calculated the mean average of the results of a series of earlier studies.

*** Noted by Noorden and Salomon (1920) as leaves, stalks and juice, presumably this is fresh and not dried material but we cannot be certain.

**** As cited by Sherman (1907: 53).

Today (see Table 2) we know that the real figure for fresh spinach is around 2.75 (US Department of Agriculture, 2010) andthe real figure for dried spinach is around 45mg per 100g (Jackson 1938; Rewashdeh et al 2009).

Table 2: More Recent Data: Accurate knowledge regarding iron levels in spinach

Type

Units

Value per 100gs

Knowledge Source

Raw Fresh

mg

2.71

USDA (2010)

Raw Fresh

mg

2.5

Council on Foods (1937)

Raw Fresh

mg

1.7 to 3

Stiebling (1932)

Raw Frozen

mg

1.89

USDA (2010)

Raw

Canned

mg

2.30

USDA (2010)

Cooked

mg

3.57

USDA (2010)

Dried

mg

44.8

Jackson (1938)

Dried

mg

44.6

Rewashdeh et al (2009)

Dried

mg

34.0

Olade and Obarisaide (2009)

So is there any possible truth at all in the spinach, in decimal error story?

On the basis of the evidence presented so far, there is at least the possibility that von Wolff made two errors: (1) he recorded dry spinach as fresh, and that in addition he compounded this error when (2) somehow he or a typesetter, or some other person accidentally moved the decimal point in his findings two places to the right. An alternative possible explanation is that von Wolff worked on fresh spinach just like he said he did and that either he or a typesetter, or some other person, accidentally moved the decimal point a massive three places to the right.

Rather than simply accept these simple and compellingly feasible explanatory possibilities, as others have done, and present them as entertaining facts we should look for alternative possibilities. A good place to start is to examine whether perhaps the science of measuring iron levels in foodstuffs was not particularly good at the time and whether other scientists – working independently – came up with similarly high measures of the amount of iron in spinach.

Writing in the first decade of the 20th century the German biochemist Haensel (1909: 9) notes that he is aware of only two studies that have analyzed the iron content of spinach. Paying tribute to but failing to cite: “recent studies on iron in food by G. von Bunge”, Haensel (1909:9) writes that all findings in his paper are based on his own analysis of the precise amount of iron in spinach.

Haensel analysed the iron content of spinach by various methods, and each time presenting in his paper two of each of his findings for the percentage of iron oxide. Haensel (1909: 14) writes that, contrary to (non-cited) earlier findings of others his own analysis, using the incinerated plant ash determination method, found that spinach was not in fact the richest plant source of iron and that lettuce, winter cabbage and endivien contained more iron.

If Emile von Wolff’s hugely exaggerated reported findings of iron in spinach were due to a decimal error alone then the decimal point was out by three decimal places. Moving his decimal point three places to the left gives a respectably accurate figure of 2.17 mg per 100g for fresh spinach. If by some amazing coincidence Haensel (1909) made a decimal place error as well – one that was reproduced by Noorden and Salomon (1920) without question – in his non-ash analysis of spinach then he made the same basic accounting error in recording the iron level for every plant he analysed; because using various methods of analysis Haensel consistently has winter cabbage, lettuce and endivien as containing slightly more iron than spinach.

Haensel’s findings for iron in fresh spinach are similar to the lowest levels found by Berg (1913) and Schall and Heisler (1917) (see Table 1). Given the similarity in their exaggerated findings, it seems more likely that the analysis method used by all three scientists, and some 45 years earlier by von Wolff, is to blame for these exaggerated figures, rather than a peculiarly coincidental series of separate decimal place accounting goofs. And, most clearly, the data presented in Table 2 exonerates von Bunge from the SPIDES because his 1892 figure is accurate. Bunge then is at least one early pioneer of nutrition who finally can stop turning in his grave as the truth is finally revealed for the first time in this article

Bad Science was to Blame for Exaggerations in the Iron Content of Spinach

More than 100 years ago Sherman (1907: 43; 53) in the US Department of Agriculture’s Office of Experiment Stations-Bulletin 185 explained in plain English the various ways that earlier biochemistry methods – such as those employed by Wolff and later by Haensel - exaggerated the iron content of foodstuffs:

“Little weight can be attached to the statements regarding iron which are to be found in the standard compilations of ash analysis, as these are based largely upon results obtained by methods which greatly overestimated the iron. Generally speaking, it is only since the discussion of iron in food materials was begun by Bunge in 1885 that analyses have been made with special reference to the determination of iron, and the amount of data which appears trustworthy is not yet very large.”

“Undoubtedly…many of the ash analysis of Wolff and Konig greatly overestimate the iron content of green vegetables, as was pointed out by Bunge in 1892.”

The various reasons Sherman’s Bulletin 185 gave for early bad science in the early high determination of iron levels of various foodstuffs, including plants and meat, can be summarised as follows:

  • Contamination of precipitates (the dissolved or suspended substances in solution)
  • Using less than completely fresh, and therefore somewhat dehydrated “fresh” plant material.
  • Volatilization of iron as ferric chloride during the ignition of the sample.
  • Contamination with iron from utensils.
  • Iron contamination from laboratory dust, including that from charcoal used in the heating process.
  • Iron in the reagents used.
  • Small amounts of platinum from dishes used in burning of the samples.

Sherman reveals then that at the turn of the 20th century American scientists were quoting von Bunge’s accurate findings of the iron levels of spinach and were well aware that von Wolff’s hugely exaggerated findings were due to unreliable methods, rather than any kind of simple decimal place transcription error.

Sherman shows us that by 1907, American scientists were more accurate, knowledgeable and ahead of the Germans on the iron in spinach issue. And because their clearly written knowledge was made available by way of the US Government’s Printing Office, it seems improbable that Noorden and Salomon’s (1920) tomb, which was never translated into English, would have influenced American scientists.

image

Copyright Dr Mike SuttonAttribution

Braced Myths

Clearly then the popular myth that is being credulously recycled by journalists, nutritionists and scientists (e.g. Gates 2010) that: “The mega-iron myth first began in 1870 when Dr. E. von Wolf misplaced a decimal point in his publication which led to an iron content figure that was ten times too high. Although investigated in 1937 by the Germans, the rumor remained strong for decades (thanks to a pipe-smoking sailor man).” Is a myth about a myth.

The myth busting Jan Willem Nienhuys, who is secretary of the Dutch organization Skepsis, kindly points out in his comment in the comments section on this paper that:

“It is not quite correct to say that Wolff used bad methods: he reports various values for an enormous number of substances all or most of them derived from measurements found in the literature. He must have known about these wildly varying iron contents, but what can one do if one reports research of others?”

Conclusion

When respected academics and sceptics, with painful irony, erroneously believe a myth to be true and so use it as an example of the need to be healthily sceptical they create the unintended consequence of bracing the myth (Sutton 2010b). Braced myths are a kind of reinforced super myth; quite what this means in terms of how difficult it will be to kill such myths remains to be seen.

At least perhaps now at last, Segar and the much maligned von Wolff and von Bunge can stop turning in their graves as the SPIDES is laid to rest.

Timeline For Busting the Spinach Popeye Iron Decimal Error Myth

1871

  • Von Wolff’s 'bad science' is said to have exaggerated spinach iron content

1892 - Swiss

  • Von Bunge gets it right

1907 - USA

  • Sherman explains 19th Century bad science

1920 - Germany

  • Noorden & Salomon still citing old German bad science

1972 - UK

  • Bender publishes spinach Popeye iron decimal error myth

1981 - UK

  • Hamblin braces Bender’s myth

2010 - UK

2010 - UK

References

Bender, A. (1972) The Wider Knowledge of Nutrition. Inaugural Lecture. October 24. Queen Elizabeth College., University of London. Somerset. Castle Cary Press Ltd.

Bender, A. (1977). Iron in spinach. Spectator. p.18. July 9.

Bender, A. (1988) Health or Hoax? London. Elvedon Press.

Berg, R. (1913). Die Nährungs- und Genußmittel (Aschenbestandteile). Dresden. Taken here from: Noorden, C. and Salomon, H. (1920) Handbuch Der Ernährungslehre Erster Band Allgemeine Diätetik. Berlin. Julious Springer.

Coultate, T. 2009. Food the Chemistry of its components. 5th Edition. Cambridge. Royal Society of Chemistry Publishing.

Gates, D. (2010) The Body Ecology Guide to the Ten Healthiest Greens http://www.bodyecology.com/07/08/30/healthiest_greens_guide.php

Haensel, E. (1909) Über den Eisen- und Phosphorgehalt unserer Vegetabilien. Biochem. Zeitschr 16. 9.

Hamblin, T.J. 1981. Fake! British Medical Journal. Volume 283. 19-26th December. pp. 1671-1674.

Jackson, S. H. 1938. Determination of Iron in Biological Material. Industrial & Engineering Chemistry Analytical Edition. 10 (6), 302-304.

Marnham, P. (1981) Postscript Counteract. The Spectator. Jan 3. page 26.

Noorden, C. and Salomon, H. (1920) Handbuch Der Ernährungslehre Erster Band Allgemeine Diätetik. Berlin. Julious Springer.

Oladele, O.O. and Aborisade A.T. (2009) American Journal of Food Technology.Volume: 4. Issue: 2. pp.: 66-70

Rewashdeh et al 2009. Iron Bioavailabilty of Rats Fed Liver, Lentil, Spinach and other Mixtures. Pakistan Journal of Biological Sciences. 12 (4) 367-372.

Schall, H. and Heisler, A. (1917) Nahrungsmitteltabelle . 5. Aufl. Taken here from Noorden, C. and Salomon, H. (1920) Handbuch Der Ernährungslehre Erster Band Allgemeine Diätetik. Berlin. Julious Springer.

Sherman. H.C. (1907). Iron in Food and Its Functions in Nutrition. Office of Experimental Stations Bulletin 185. May 25. p56.

Stiebling, H. K.(1932) United States Dept. of Agriculture, Circular No. 205.

Sutton, M. (2010a). Spinach, Iron and Popeye:Ironic lessons from biochemistry and history on the importance of healthy eating, healthy scepticism and adequate citation. Internet Journal of Criminology (Primary Research Paper series). http://www.internetjournalofcriminology.com/Sutton_Spinach_Iron_and_Popeye_March_2010.pdf

Sutton (2010b) Discovery of Braced Myths. Supermyths blog. September 24th. Available online: http://super-myths.blogspot.com/search/label/Discovery%20of%20braced%20myths

Wolff, E. (1871) Aschen-Analysen von Landwirthschaftlichen Producten Fabrik - Abflällen und Wildwachsenden Pflanzen. Berlin. Wiegandt & Hampel.

Walter (2004) Astronautics – that’s what you get out of it. Institute of Astronautics. http://www.lrt.mw.tum.de/en/interessierte/fs_nutzen_der_raumfahrt.phtml


[1] This is a misspelling by Bender of Salomon.

 

No Worries, We Are NOT Affected By The OpenSSL Bug

We do not use OpenSSL here at BestThinking.com or ThinkerBooks.com. No need to worry or change passwords here because of the widely-publicized Heartbleed Bug.

Close
Mike Sutton Identity Verified

About the Author 

Mike Sutton
Dr Mike Sutton is the originator of the Market Reduction Approach to theft. He is the General Editor of the Internet Journal of Criminology

Recent Content by Mike Sutton

Patrick Matthew is no Longer Buried in Oblivion and So I’m ‘Smokin My Own Dope’

Darwin’s cat is well and truly out of the bag. On Friday the 11 th April a national newspaper, the Scottish Daily Mail, ran the following story on a body of research that has been unfolding here on Best Thinking from the start of 2014. Caven (2014, p.21): Did Darwin copy ideas...

The Camera Does Sometimes Lie

I learned something interesting today, when your mobile phone’s camera's rolling shutter just happens to be operating at the same speed as the thing it films the following picture weirdness happens. I took the picture below on a flight from Edinburgh to Nottingham on Friday last week and was...

Scotland's Greatest Scientific Discovery?

1. Daniel C. Dennett (1996) : ‘…the single best idea anyone has ever had, I’d give it to Darwin, ahead of Newton and Einstein and everyone else. In a single stroke, the idea of evolution by natural selection unifies the realm of life, meaning, and purpose with the realm of space and time, cause...

Internet Dating with Darwin: New Discovery that Darwin and Wallace were Influenced by Matthew's Prior-Discovery

Contrary to current knowledge, Matthew's 1831 book, revealing and detailing his discovery of natural selection, was cited in the literature before 1858 by three naturalists who played key pre-1858 roles in facilitating and influencing Darwin’s and Wallace’s published ideas on natural selection

The Warren Harding 1916 Founded Founding Fathers Myth is Bust

It is a myth that 29th US President Warren G.Harding coined the phrase 'founding fathers' in 1916. This article uniquely proves that he never coined the phrase. Moreover, it provides irrefutable new evidence that Harding first used the exact same phrase in a 1914 speech and 1915 published article.

The Merton Myth is Bust

Retired after 65 years is the universally believed academic knowledge that Robert K. Merton (one of the most the eminent American sociologist of the twentieth and twenty-first centuries) coined the phrase “self-fulfilling prophecy” because the phrase was published at least as early as 1841.

 
Latest Ebooks